skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palamara, O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The MicroBooNE experiment is an 85 tonne active mass liquid argon time projection chamber neutrino detector exposed to the on-axis Booster Neutrino Beam at Fermilab. One of MicroBooNE’s physics goals is the precise measurement of neutrino interactions on argon in the 1 GeV energy regime. Building on the capabilities of the MicroBooNE detector, this analysis identifies K + mesons, a key signature for the study of strange particle production in neutrino interactions. This measurement is furthermore valuable for background estimation for future nucleon decay searches and for improved reconstruction and particle identification capabilities in experiments such as the Deep Underground Neutrino Experiment. In this Letter, we present the first-ever measurement of a flux-integrated cross section for charged-current muon neutrino induced K + production on argon nuclei, determined to be 7.93 ± 3.22 ( stat ) ± 2.83 ( syst ) × 10 42 cm 2 / nucleon based on an analysis of 6.88 × 10 20 protons on target. This result was found to be consistent with model predictions from different neutrino event generators within the reported uncertainties. 
    more » « less
    Free, publicly-accessible full text available December 19, 2026
  2. Abstract The existence of three distinct neutrino flavours,νeμandντ, is a central tenet of the Standard Model of particle physics1,2. Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino,νs(refs. 3–9). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND)3experiment and Mini-Booster Neutrino Experiment (MiniBooNE)4,5, consistent withνμ → νetransitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber10in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly6–8. This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy betweenνeappearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for eitherνμ → νeflavour transitions orνedisappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent withνμ → νetransitions cannot be explained by introducing a single sterile neutrino state. 
    more » « less
    Free, publicly-accessible full text available December 3, 2026
  3. We report results from an updated search for neutral current (NC) resonant Δ ( 1232 ) baryon production and subsequent Δ radiative decay (NC Δ N γ ). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a Δ ( 1232 ) baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC Δ N γ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC Δ N γ events with and without final state protons, our data exclude an interpretation in which all excess events have associated protons at 2.0 σ , and are consistent with an interpretation in which all excess events have no associated protons at  0.63 σ
    more » « less
    Free, publicly-accessible full text available November 17, 2026
  4. We report a new measurement of flux-integrated differential cross sections for charged-current (CC) muon neutrino interactions with argon nuclei that produce no final-state pions ( ν μ CC 0 π ). These interactions are of particular importance as a topologically defined signal dominated by quasielasticlike interactions. This measurement was performed with the MicroBooNE liquid argon time projection chamber detector located at the Fermilab Booster Neutrino Beam and uses an exposure of 1.3 × 10 21 protons on target collected between 2015 and 2020. The results are presented in terms of single- and double-differential cross sections as a function of the final-state muon momentum and angle. The data are compared with widely used neutrino event generators. We find good agreement with the single-differential measurements, while only a subset of generators are also able to adequately describe the data in double-differential distributions. This work facilitates comparison with Cherenkov detector measurements, including those located at the Booster Neutrino Beam. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  5. Understanding electron neutrino interactions is crucial for measurements of neutrino oscillations and searches for new physics in neutrino experiments. We present the first measurement of the flux-averaged ν e + ν ¯ e charged-current single charged-pion production cross section on argon using the MicroBooNE detector and data from the NuMI neutrino beam. The total cross section is measured to be [ 0.93 ± 0.13 ( stat ) ± 0.27 ( syst ) ] × 10 39 cm 2 / nucleon at a mean ν e + ν ¯ e energy of 730 MeV. Differential cross sections are also reported in electron energy, electron and pion angles, and electron-pion opening angle. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  6. This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of 1.11 × 10 21 protons on target, a 70% increase on past results. Two samples of electron neutrino interactions without visible pions are used, one with visible protons and one without any visible protons. The MicroBooNE data show reasonable agreement with the nominal prediction, with p values 26.7 % when the two ν e samples are combined, though the prediction exceeds the data in limited regions of phase space. The data are further compared to two empirical models that modify the predicted rate of electron-neutrino interactions in different variables in the simulation to match the unfolded MiniBooNE low energy excess. In the first model, this unfolding is performed as a function of electron neutrino energy, while the second model aims to match the observed shower energy and angle distributions of the MiniBooNE excess. This measurement excludes an electronlike interpretation of the MiniBooNE excess based on these models at > 99 % CL s in all kinematic variables. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  7. We investigate the expected precision of the reconstructed neutrino direction using a ν μ -argon quasielasticlike event topology with one muon and one proton in the final state and the reconstruction capabilities of the MicroBooNE liquid argon time projection chamber. This direction is of importance in the context of DUNE sub-GeV atmospheric oscillation studies. MicroBooNE allows for a data-driven quantification of this resolution by investigating the deviation of the reconstructed muon-proton system orientation with respect to the well-known direction of neutrinos originating from the Booster Neutrino Beam with an exposure of 1.3 × 10 21 protons on target. Using simulation studies, we derive the expected sub-GeV DUNE atmospheric-neutrino reconstructed simulated spectrum by developing a reweighting scheme as a function of the true neutrino energy. We further report flux-integrated single- and double-differential cross section measurements of charged-current ν μ quasielasticlike scattering on argon as a function of the muon-proton system angle using the full MicroBooNE data sets. We also demonstrate the sensitivity of these results to nuclear effects and final state hadronic reinteraction modeling. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  8. Neutrino-nucleus cross section measurements are needed to improve interaction modeling to meet the precision needs of neutrino experiments in efforts to measure oscillation parameters and search for physics beyond the Standard Model. We review the difficulties associated with modeling neutrino-nucleus interactions that lead to a dependence on event generators in oscillation analyses and cross section measurements alike. We then describe data-driven model validation techniques intended to address this model dependence. The method relies on utilizing various goodness-of-fit tests and the correlations between different observables and channels to probe the model for defects in the phase space relevant for the desired analysis. These techniques shed light on relevant mismodeling, allowing it to be detected before it begins to bias the cross section results. We compare more commonly used model validation methods which directly validate the model against alternative ones to these data-driven techniques and show their efficacy with fake data studies. These studies demonstrate that employing data-driven model validation in cross section measurements represents a reliable strategy to produce robust results that will stimulate the desired improvements to interaction modeling. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  9. We report the first double-differential cross section measurement of neutral-current neutral pion ( NC π 0 ) production in neutrino-argon scattering, as well as single-differential measurements of the same channel in terms of final states with and without protons. The kinematic variables of interest for these measurements are the π 0 momentum and the π 0 scattering angle with respect to the neutrino beam. A total of 4971 candidate NC π 0 events fully contained within the MicroBooNE detector are selected using data collected at a mean neutrino energy of 0.8 GeV from 6.4 × 10 20 protons on target from the Booster Neutrino Beam at the Fermi National Accelerator Laboratory. After extensive data-driven model validation to ensure unbiased unfolding, the Wiener-singular-value-decomposition method is used to extract nominal flux-averaged cross sections. The results are compared to predictions from commonly used neutrino event generators, which tend to overpredict the measured NC π 0 cross section, especially in the 0.2 0.5 GeV / c π 0 momentum range and at forward scattering angles. Events with at least one proton present in the final state are also underestimated. This data will help improve the modeling of NC π 0 production, which represents a major background in measurements of charge-parity violation in the neutrino sector and in searches for new physics beyond the standard model. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  10. Large neutrino liquid argon time projection chamber (LArTPC) experiments can broaden their physics reach by reconstructing and interpreting MeV-scale energy depositions, or blips, present in their data. We demonstrate new calorimetric and particle discrimination capabilities at the MeV energy scale using reconstructed blips in data from the MicroBooNE LArTPC at Fermilab. We observe a concentration of low-energy ( < 3 MeV ) blips around fiberglass mechanical support struts along the time projection chamber edges with energy spectrum features consistent with the Compton edge of 2.614 MeV Tl 208 decay γ rays. These features are used to verify proper calibration of electron energy scales in MicroBooNE’s data to few percent precision and to measure the specific activity of Tl 208 in the fiberglass composing these struts, ( 11.7 ± 0.2 ( stat ) ± 3.1 ( syst ) ) Bq / kg . Cosmogenically produced blips above 3 MeV in reconstructed energy are used to showcase the ability of large LArTPCs to distinguish between low-energy proton and electron energy depositions. An enriched sample of low-energy protons selected using this new particle discrimination technique is found to be smaller in data than in dedicated cosmic-ray simulations, suggesting either incorrect modeling of incident cosmic fluxes or particle transport modeling issues in eant4. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026